Eclipse Arrowhead
Cyber architecture for complex System of Systems

Prof. Jerker Delsing
Luleå University of Technology
jerker.delsing@ltu.se
To see the Eclipse Arrowhed video click here or go to https://youtu.be/vf28cQVgPss
OT meets IT

2015+
The 4th industrial platform

IndTech

Technology

Engineering Tools

Market

OT

IT

Production

SmartCity

Energy

Building

5G

IoT

SoS

Big Data Analytics

Block Chain

AI

UX

1980+
Proprietor Automation & Industrial OT

Life Science

Bank & Finance

www.arrowhead.eu
Architecture basics

- Micro-service Architecture - SOA
 - Look-up
 - Late binding
 - Loosely coupled
- Interoperability
 - Multi-protocol, multi-technology
 - “one size never fits all”
- Integration platform
 - To integrate OT and IT, with IoT
- Model Based Engineering - MBE
 - SysML
Key architecture concepts

- Service registry -
 - Look-up - what's available

- Orchestration
 - Late binding and loosely coupled
 - Dynamic and run-time changes

- Security
 - Authentication, Authorisation and Audit
 - Payload encryption
 - Security to the edge
Key architecture concepts

• Local clouds
• Self contained secure
• From cloud to edge
• System of local clouds
• microservice integration between local clouds
Key architecture concepts

- Local clouds
- Self contained secure
- From cloud to edge
- System of local clouds
- microservice integration between local clouds
Interoperability - Protocol translation

Translation between different protocols
HTTP, CoAP, MQTT, Websocket

Service A

System P

Translator

Service A Contract

A_SD → A_IDD
A_CP
A_SP

Service A*

System C

A_SD → A*_IDD
A*_CP
A_SP

Service A* Contract
Interoperability
Multi-protocol, multi-technology

Support core systems models
Translator
HTTP (REST), CoAP, MQTT, (Websocket)
Adaptors to other communication protocols
OPC-UA <-> Arrowhead
Modbus TCP <-> Arrowhead
Z-wave <-> Arrowhead
ZigBee <-> Arrowhead
IO-link <-> Arrowhead
Thing of Web <-> Arrowhead
Datamodel adaptor
ISO 10303 - STEP AP-242
Automation engineering
Engineering process integrated by SOA

Modelling the engineering process - IEC 81346 + extensions
Model based engineering providing a flexible integration of solution architecture and the engineering process!!
Eclipse Arrowhead v4.4.1
Eclipse Arrowhead v4.4.1

Engineering tools
- SysML 1.6 profile
- Eclipse Kura
- Eclipse Kapua
- Eclipse hawkBit
- Eclipse Arrowhead

Management support:
- Management Tool
- Translation
- Gatekeeper
- Gateway
- Configuration
- Plant Description
- Management Tool
- Test Tool
- Sandbox Tool
- Solution MBE

Supply chain/product life cycle
- Contract Proxy

Execution support
- Choreography
- Workflow Manager
- Workflow Executor

Control support
- Control Strategy

System of Systems support
- Event Handler
- Data Manager
- Eclipse hawkBit
- Eclipse Kura
- Eclipse Kapua

Inter cloud service exchange
- Gatekeeper
- Gateway

Interoperability
- Translation
- FiWare
- 61499
- Modbus TCP
- OPC-UA
- Z-wave

Security infrastructure
- System Registry
- Device Registry
- On-boarding
- Security Compliance
- Security Mitigation

Local cloud basic properties
- Service Registry
- Authorisation
- Orchestration
- Certificate Authority

Release candidates v4.5.0
- Released
- Separately released

Tool chain interoperability
Eclipse Arrowhead v5.0.0

Currently being specified

Primary objective

Lower the entry step

Robustness

Some changes to mandatory core system

Documentation stringency

Extended interoperability -

Data models, ISO 10303, ISO 15926, IEC81346, BIM, ...
V&V in industrial production

This research work has been funded by the European Commission, through the European H2020 research and innovation programme, ECSEL Joint Undertaking, and National Funding Authorities from 18 involved countries under the research project Arrowhead Tools with Grant Agreement no. 826452.
10+ use cases with considerable engineering cost savings

Objective 20-50% cost reduction

Actual 30-95% cost reduction compared to current industrial state of the art
Comparison to other technologies
IoT-SoS Architectures & Platforms

<table>
<thead>
<tr>
<th>Features</th>
<th>Arrowhead</th>
<th>AUTOSAR</th>
<th>BaSyx</th>
<th>FIWARE</th>
<th>IoTvity</th>
<th>LWM2M</th>
<th>OCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key principles</td>
<td>SOA, Local Automation Clouds</td>
<td>Runtime, Electronic Control Unit (ECU)</td>
<td>Variability of production processes</td>
<td>Context awareness</td>
<td>Device-to-device communication</td>
<td>M2M, Constrained networks</td>
<td>Resource Oriented REST, Certification</td>
</tr>
<tr>
<td>Real-time</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes (IoTvityConstrained)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Run-time</td>
<td>Dynamic orchestration and authorization, monitoring, and dynamic automation</td>
<td>Runtime Environment layer (RTE)</td>
<td>Runtime environment</td>
<td>Monitoring, dynamic service selection and verification</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Distributed</td>
<td>Distributed</td>
<td>Centralize</td>
<td>Centralize</td>
<td>Centralize</td>
<td>Centralize</td>
<td>Centralize</td>
<td>Centralize</td>
</tr>
<tr>
<td>Open Source</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Resource accessibility</td>
<td>High</td>
<td>Low</td>
<td>Very low</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Supporters</td>
<td>Arrowhead</td>
<td>AUTOSAR</td>
<td>Bsys 4.0</td>
<td>FIWARE Foundation</td>
<td>Open Connectivity Foundation</td>
<td>OMA SpecWorks</td>
<td>Open Connectivity Foundation</td>
</tr>
<tr>
<td>Message patterns</td>
<td>Req/Repl, Pub/sub</td>
<td>Req/Repl, Pub/sub</td>
<td>Req/Repl, Pub/sub</td>
<td>Req/Repl, Pub/sub</td>
<td>Req/Repl, Pub/sub</td>
<td>Req/Repl, Pub/sub</td>
<td>Req/Repl</td>
</tr>
<tr>
<td>Transport protocols</td>
<td>TCP, UDP, DTLS/TLS</td>
<td>TCP, UDP, TLS</td>
<td>TCP</td>
<td>TCP, UDP, DTLS/TLS</td>
<td>TCP, UDP, DTLS/TLS</td>
<td>TCP, UDP, DTLS/TLS</td>
<td>TCP, UDP, DTLS/TLS, BLE</td>
</tr>
<tr>
<td>Communication protocols</td>
<td>HTTP, CoAP, MQTT, OPC-UA</td>
<td>HTTP</td>
<td>HTTP, OPC-UA</td>
<td>HTTP, RTPS</td>
<td>HTTP, CoAP</td>
<td>CoAP</td>
<td>HTTP, CoAP</td>
</tr>
<tr>
<td>3rd party and Legacy systems adaptability</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Security Manager</td>
<td>Authentication, Authorization and Accounting Core System</td>
<td>Crypto Service Manager, Secure Onboard Communication</td>
<td>–</td>
<td>Identity Manager Enabler</td>
<td>Secure Resource Manager</td>
<td>OSCORE</td>
<td>Secure Resource Manager</td>
</tr>
<tr>
<td>Standardization</td>
<td>Use of existing standards</td>
<td>AUTOSAR standards</td>
<td>Use of existing standards</td>
<td>FIWARE NGSI</td>
<td>OCF standards</td>
<td>Use of existing standards</td>
<td>OCF standards</td>
</tr>
</tbody>
</table>

www.arrowhead.eu
Resources

Youtube
https://www.youtube.com/channel/UCC-kTqFXh7StNwR7IFCRCjw

Web
www.arrowhead.eu/eclipse-arrowhead
www.arrowhead.eu/arrowheadtools

Github - code and documentation
www.github.com/eclipse-arrowhead

Book
www.arrowhead.eu
Conclusions

- Eclipse Arrowhead can implement architectures like
 - ISA95
 - RAMI4.0
- Engineering efficiency is very high compared to current state of the art
- Open source as Eclipse Arrowhead v4.4.1
- Already in commercial use by several companies